$\mathrm{C} 7-\mathrm{Ol}-\mathrm{Cl}$	106.0 (2)	C4-C3-C2	121.0 (3)
$\mathrm{C} 7-\mathrm{O} 2-\mathrm{C} 2$	108.3 (3)	C3-C4-C5	122.5 (3)
C4-O3-C3	60.7 (2)	O6-C6-C5	101.8 (3)
$\mathrm{Ol}-\mathrm{Cl}-\mathrm{C} 2$	102.7 (3)	C1-C6-C5	116.9 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	116.5 (3)	O1-C7-O2	106.2 (2)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{Cl}$	102.4 (3)	C8-C7-C9	112.5 (3)
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	115.1 (3)	C12-C10-Cll	113.8 (4)
$\mathrm{C} 7-\mathrm{Ol}-\mathrm{C} 1-\mathrm{C} 2$	-37.6 (3)	O3-C4-C5-O5	166.3 (3)
$\mathrm{C} 7-\mathrm{Ol}-\mathrm{Cl}-\mathrm{C} 6$	-162.6 (3)	C3-C4-C5-O5	-125.4 (4)
$\mathrm{C} 7-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	-19.9 (3)	O3-C4-C5-C6	-78.3 (4)
C7-O2-C2-C3	103.4 (3)	C3-C4-C5-C6	-10.1 (5)
$\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 2-\mathrm{O} 2$	34.9 (3)	$\mathrm{C10-O6-C6-Cl}$	-157.9 (3)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	155.7 (3)	$\mathrm{C10-O6-C6-C5}$	-35.3 (3)
$\mathrm{Ol}-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	-85.7 (3)	$\mathrm{O} 1-\mathrm{Cl}-\mathrm{C} 6-\mathrm{O6}$	-174.8 (3)
C6-C1-C2-C3	35.1 (4)	C2-Ci-C6-O6	68.6 (4)
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	-112.4(3)	O1-C1-C6-C5	72.7 (4)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	-62.4 (4)	C2-Cl-C6-C5	-43.9 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 3$	53.4 (4)	O5-C5-C6-O6	35.4 (3)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-130.8(3)	C4-C5-C6-O6	-84.7 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-15.0 (4)	O5-C5-C6-Cl	150.2 (3)
$\mathrm{C} 3-\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5$	115.0 (4)	C4-C5-C6-Cl	30.1 (5)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 3$	103.3 (3)	$\mathrm{Cl}-\mathrm{Ol}-\mathrm{C} 7-\mathrm{O} 2$	25.6 (3)
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	-100.5 (4)	C2-O2-C7-O1	-2.5 (4)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	2.8 (5)	C5-O5-C10-O6	2.1 (4)
$\mathrm{C} 10-\mathrm{O}-\mathrm{C} 5-\mathrm{C} 4$	99.4 (4)	C6-O6-C10-O5	21.7 (4)
C10-O5-C5-C6	-23.4 (4)		

Data collection: XSCANS (Siemens, 1993). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976) in PLATON98 (Spek. 1990, 1998). Software used to prepare material for publication: SHELXL93.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1231). Services for accessing these data are described at the back of the journal.

References

Angyal, S. J. \& Matheson, N. K. (1955). J. Ain. Chem. Soc. 77. 4343-4346.
Chung, S.-K., Ryu, Y., Chang, Y.-T., Whang. D. \& Kim. K. (1994). Carbohydr. Res. 253, 13-18.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Falshaw, A., Gainsford, G. J. \& Lensink, C. (1999). Actı Crusl. C55. Submitted.
Gilbertson, S. R. \& Chang, C.-W. T. (1995). J. Org. Chem. 60, 62266228.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Latvala, A., Onur, M. A., Gozler, T., Linden, A., Kivcak, B. \& Hesse, M. (1995). Phytochemistry, 39. 1229-1240.

McConnell, J. F., Angyal, S. J. \& Stevens, J. D. (1972). J. Chem. Soc. Perkin Trans. pp. 2039-2044.
RajanBabu, T. V., Ayers, T. A. \& Casalnuovo, A. L. (1994). J. Am. Chem. Soc. 116, 410I-4102.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Geımany.
Siemens (1993). XSCANS. X-ray Single Crystal Analysis System. Version 1.0. Siemens Analytical X-ray Instruments Inc., Madison. Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Spek, A. L. ([998). PLATON98. Molecular Geometry Program. University of Utrecht, The Netherlands.

Acta Cryst. (1999). C55, 960-962

N-(Isopropyl)norbornane-endo-2,3dicarboximide

Ryouko Yoshihara, ${ }^{a}$ Hiroyuki Hosomi, ${ }^{a}$ Hiromu Aoyama ${ }^{b}$ and Shigeru Ohba ${ }^{a}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1. Kohoku-ku, Yokohama 223-8522, Japan, and ${ }^{h}$ Department of Material Chemistry, Faculty of Textile Science and Technology, Sinsyu University, Tokida 3-15-1, Ueda 386-0081, Japan. E-mail: ohba@chem.keio.ac.jp

(Received 13 October 1998; accepted 9 Februarr 1999)

Abstract

The geometry of the title molecule, N-isopropylbicyclo-[2.2.1]heptane-endo-2,3-dicarboximide, $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$, has been confirmed as the endo conformation. The orientation of the isopropyl (${ }^{i} \mathrm{Pr}$) group relative to the succinimide moiety is a little unsymmetric and the ${ }^{i} \operatorname{Pr}$ group rotates ca 6° around the $\mathrm{N}-\mathrm{C}$ bond from the perpendicular configuration. This causes the stereoselectivity of the photoreaction in the solid state. The diastereoexcess of the ring expansion products indicates that the carbonyl- O atom predominantly abstracts the nearest γ hydrogen in the molecule.

Comment

By photoirradiation of the title compound, (I), the ring expansion products, (II) and (III), werc obtained. The reaction may proceed via intramolecular γ-hydrogen abstraction by the carbonyl-O atom to yield the 2azetidinol derivatives, (II^{\prime}) and (III^{\prime}).

When one of the H atoms bonded to C 14 in (I) is abstracted by the carbonyl atom O2, compound (II) is obtained. Compound (III) is obtained if an H atom on C 15 in (I) is abstracted by O 2 . In the solid-state reaction
the yield of (II) (38\%) is greater than that of (III) (12\%). This corresponds well to the molecular geometry in the crystal. The intramolecular $\mathrm{O} 2 \cdots \mathrm{C} 14$ distance of 3.214 (3) \AA is shorter than the $\mathrm{O} 2 \cdots \mathrm{C} 15$ distance of 3.370 (4) \AA. This imbalance is caused by a 6° rotation of the ${ }^{i} \operatorname{Pr}$ group around the $\mathrm{N} 3-\mathrm{C} 13$ bond axis from the perpendicular configuration, relative to the succinimide moiety.

Fig. I. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as spheres of an arbitrary radius.

The H atoms of the ${ }^{i} \mathrm{Pr}$ group could not be located on difference syntheses in the present study. Therefore, one of the possible configurations of the propyl H atoms was tentatively assumed. In this model, the nearest γ-hydrogen to atom O 2 is $\mathrm{H} 14 B$ (at $2.63 \AA$), and the second nearest is $\mathrm{H} 15 A$ (at $2.93 \AA$). The other H atoms bonded to C14 or C15 are $3.58-4.25 \AA$ from O2.

It is interesting that the major product of the photoreaction of (I) in the acetonitrile solution is (III), which is the minor product in the solid-state reaction. The yields of (II) and (III) in acetonitrile solution were 26 and 40%, respectively.

Experimental

Compound (I) was synthesized by Diels-Alder addition of N-isopropylmaleimide to cyclopentadiene and subsequent hydrogenation of the resulting adduct using palladium on carbon as a catalyst. Crystals of (I) were grown from acetonitrile solution by slow evaporation. The photoreactivity in the solid state was determined by one of the authors (HA). Compound (I) was deposited on the inside wall of a quartz tube as a thin film, by evaporation from methylene chloride solution. Irradiation with a low pressure mercury lamp was performed under argon at 273-283 K. The products were isolated by flash chromatography on silica gel. The two diastereomers, (II) and (III), were assigned on the basis of their ${ }^{1} \mathrm{H}$ NMR spectra (NOE difference spectra). The ratio of the two products was almost independent of the degree of conversion ($20-100 \%$).

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$
$\mathrm{Cu} K \alpha$ radiation
$M_{r}=207.27$
Monoclinic
$P 2_{1} / c$
$a=6.411$ (2) \AA
$b=20.092(2) \AA$
$c=8.930(2) \AA$
$\beta=103.24$ (2) ${ }^{\circ}$
$V=1119.7(5) \AA^{3}$
$Z=4$
$D_{x}=1.229 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
$\lambda=1.54184 \AA$
Cell parameters from 25 reflections
$\theta=29.4-30.0^{\circ}$
$\mu=0.670 \mathrm{~mm}^{-1}$
$T=248 \mathrm{~K}$
Prism
$0.6 \times 0.6 \times 0.5 \mathrm{~mm}$
Colourless

Data collection

Rigaku AFC-7R diffractom-
1978 reflections with
eter
$\theta / 2 \theta$ scans
Absorption correction:
by integration (Coppens
et al., 1965)
$T_{\text {min }}=0.679, T_{\text {max }}=0.763$
2374 measured reflections
2186 independent reflections

Refinement

Refinement on F
$R=0.065$
$w R=0.151$
$S=1.96$
2186 reflections
137 parameters
H -atom parameters not
refined
$w=1 /\left[\sigma^{2}\left(F_{s}\right)\right.$
$\left.+0.00504\left|F_{o}\right|^{2}\right]$
$I>2 \sigma(I)$
$R_{\text {int }}=0.055$
$\theta_{\text {max }}=75^{\circ}$
$h=0 \rightarrow 8$
$k=0 \rightarrow 25$
$l=-11 \rightarrow 11$
3 standard reflections every 150 reflections intensity decay: none

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Ol}-\mathrm{C4}$	1.222 (3)	$\mathrm{N} 3-\mathrm{Cl} 3$	1.475 (2)
$\mathrm{O} 2-\mathrm{C} 7$	$1.213(2)$	C13-C14	1.492 (4)
N3-C4	1.390 (3)	C13-C15	1.461 (4)
N3-C7	1.390 (3)		
N3-C13-C14	113.0 (2)	$\mathrm{C} 14-\mathrm{Cl} 3-\mathrm{C} 15$	117.3 (2)
$\mathrm{N} 3-\mathrm{Cl} 3-\mathrm{Cl} 5$	113.2 (2)		
$\mathrm{C} 7-\mathrm{N} 3-\mathrm{Cl} 3-\mathrm{Cl} 4$	62.0 (3)	$\mathrm{C} 7-\mathrm{N} 3-\mathrm{Cl} 3-\mathrm{Cl} 5$	-74.3(3)

All H -atom positions were calculated geometrically, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Data collection: MSCIAFC Diffractometer Control Software (Molecular Structure Corporation, 1993). Cell refinement: MSCIAFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1998). Program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: TEXSAN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1232). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla. M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cŗ̣st. 27. 435436.

Coppens, P., Leiserowitz, L. \& Rabinovich. D. (1965). Acta Cryst. 18, 1035-1038.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive. The Woodlands. TX 77381, USA.
Molecular Structure Corporation (1998). TEXSAN. Single Crystal Structure Analysis Software. Version 1.9. MSC. 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Zachariasen, W. H. (1967). Acta Crust. 23, 558-564.

Acta Cryst. (1999). C55, 962-963

Low-temperature structure of allyl silatrane

Jonathan M. White and Scott Jones
School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia. E-mail: j.white@mail.chemistry. unimelb.edu.au

(Received 4 June 1998; accepted 5 February 1999)

Abstract

The structure of the title compound, 1-allyl-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane ($\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Si}$), was determined in order to study the structural effects which arise from hyperconjugation between the $\mathrm{C}-\mathrm{Si}$ bond and the allyl double bond. The dative $\mathrm{N} \cdots$. Si distance is 2.140 (1) \AA.

\section*{Comment}

As part of our general interest in the structural consequences of hyperconjugation in silicon compounds (White, 1995), we chose to determine the structure of allyl silatrane, (I). Allyl silatrane has been shown to undergo reaction with electrophiles more readily than

© 1999 International Union of Crystallography
Printed in Great Britain - all rights reserved
tetracoordinate allyl silanes (Cerveau, 1987), and this reactivity is believed to arise from particularly effective hyperconjugation between the $\mathrm{Si}-\mathrm{C} \sigma$-electrons and the $\mathrm{C}=\mathrm{C} \pi$-system (Fig. 1). Thus, we were interested in investigating whether the hyperconjugation in (I) would lead to any observable structural effects, such as lengthening of the Si -allyl bond, lengthening of the $\mathrm{C}=\mathrm{C}$ double bond or a decrease in the intrabridgehead $\mathrm{N} \cdots$. Si distance, as expected from contributions from the resonance form, ($\mathrm{I} a$), compared with similar saturated analogues in which hyperconjugation is absent.

Fig. 1. Hyperconjugation in allylsilatrene.

The structure of (I) was determined at 130 K to eliminate the unwanted effects of thermal motion. Although the bicyclic moiety was well ordered, the allyl group was disordered over two positions, with occupancies of $52(1)$ and $48(1) \%$. This disorder arises from rotation about the $\mathrm{C} 12-\mathrm{C} 13$ bond. Intrabridgehead interaction between the amino group and the Si atom is evidenced by the $\mathrm{N} 5 \cdots$ Si distance of $2.140(1) \AA$, which is considerably shorter than the sum of the van der Waals radii for Si and $\mathrm{N}(3.65 \AA$; Bondi, 1964). As a result of this interaction, the Si distorts from a regular tetrahedral geometry towards a trigonal bipyramid, with N5 and Cl 2 at the apical positions and $\mathrm{O} 2, \mathrm{O} 8$ and O 9 at the basal positions. This distortion is best exemplified by the bond angles about the Si : the mean $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ angle is 118.7 , the mean $\mathrm{O}-\mathrm{Si}-\mathrm{C} 12$ angle is 96.4 and the mean $\mathrm{N} \cdots \mathrm{Si}-\mathrm{O}$ angle is 83.58°.

Owing to the disorder of C 13 and C14, the bond distances involving these atoms must be treated as somewhat suspect. Therefore, we cannot make any conclusions regarding structural effects arising from hyperconjugation between the $\mathrm{Si}-\mathrm{C} 12$ bond and the $\mathrm{C} 13=\mathrm{C} 14$ double bond. However, the $\mathrm{Si}-\mathrm{Cl2}-\mathrm{Cl3}-\mathrm{C} 14$ torsion angle of $106.8(3)^{\circ}$ is close to the optimum conformation required for this interaction. Consideration of the interatomic distances in the ordered part of the structure of (I) does provide some tentative structural evidence for hyperconjugation between the $\mathrm{Si}-\mathrm{Cl} 2$ bond and the allyl π-system. Thus, the N \cdots Si bond of 2.140 (1) \AA is slightly shorter than the corresponding distance observed in the analogous structures, (II) [2.173 (2) \AA; Hencsei et al., 1988] and (III) [2.177 (4) \AA; Hencsei et al., 1989]. Furthermore, the $\mathrm{Si}-\mathrm{Cl2}$ distance of 1.896 (1) \AA is slightly longer than the corresponding distances in (II)

